Go to: Bonfoh, A. S. Website


Teaching Assignment and Office Hours

Name: Dr.Bonfoh, A. S. Phone: 7263 Off. Loc: 5-203-4 Email: bonfoh@kfupm.edu.sa

 

Teaching assignment
# Course Section Period Location Activity Days
 1  MATH202  05  01:00PM  4-106  LEC  UTR
 2  MATH202  09  10:00AM  3-104  LEC  UTR

 

Office Hours (Phone: 7263 Office: 5-203-4 )
Sunday Monday Tuesday Wednesday Thursday
 12:10-12:50
 
 
 
 12:10-12:50
 
 
 
 12:10-12:50
 
Remark:
Last update on 9/3/2019/bonfoh


Publications

Sno Publications Year Status
[1] A. Bonfoh and C. D. Enyi, "The Cahn-Hilliard equation as limit of a conserved phase-field system," Asymptotic Analysis, vol. 101, no. 3, pp. 97-148, Jan. 2017.   2017 Published
[2] A. Bonfoh and C. D. Enyi, "Large time behavior of a conserved phase-field system," Communications on Pure and Applied Analysis, vol. 15, no. 4, pp. 1077-1105, July 2016.   2016 Published
[3] A. Bonfoh, "Dynamics of the conserved phase-field system," Applicable Analysis, vol. 95, no. 1, pp. 44-62, 2016.   2016 Published
[4] A. Bonfoh, "The viscous Cahn-Hilliard equation with inertial term," Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 3, pp. 946-964, 2011.   2011 Published
[5] A. Bonfoh, "The singular limit dynamics of the phase-field equations," Annali di Matematica Pura ed Applicata, vol. 190, no. 1, pp. 105-144, 2011.   2011 Published
[6] A. Bonfoh, M. Grasselli, and A. Miranville, "Inertial manifolds for a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation," Topological Methods in Nonlinear Analysis, vol. 35, no. 1, pp. 155-185, 2010.   2010 Published
[7] A. Bonfoh, M. Grasselli, and A. Miranville, "Singularly perturbed 1D Cahn-Hilliard equation revisited," Nonlinear Differential Equations and Applications, vol. 17, no. 6, pp. 663-695, 2010.   2010 Published
[8] A. Bonfoh, "Dynamics of Hodgkin-Huxley systems revisited," Applicable Analysis, vol. 89, no. 8, pp. 1251-1269, 2010.   2010 Published
[9] A. Bonfoh, "Slightly compressible 2D Navier-Stokes equations revisited," Advances in Mathematical Sciences and Applications, vol. 20, no. 1, pp. 77-89, 2010.   2010 Published
[10] A. S. Bonfoh, "Exponential attractors for the viscous Cahn-Hilliard equation in an unbounded domain," International Journal of Evolution Equations, vol. 4, no. 1, pp. 113-119, 2009.   2009 Published
[11] A. Bonfoh, M. Grasselli, and A. Miranville, "Long time behavior of a singular perturbation of the viscous Cahn-Hilliard-Gurtin equation," Mathematical Methods in the Applied Sciences, vol. 31, pp. 695-734, 2008.   2008 Published
[12] A. S. Bonfoh, "Second grade fluids with enhanced viscosity as dynamical systems," International Journal of Evolution Equations, vol. 2, no. 1, pp. 11-17, 2007.   2007 Published
[13] A. S. Bonfoh, "Error analysis of a generalized Cahn-Hilliard equation," Southeast Asian Bulletin of Mathematics, vol. 31, pp. 29-42, 2007.   2007 Published
[14] A. S. Bonfoh, "Longtime behaviour of solutions of a generalized Cahn-Hilliard equation with order parameter dependent mobility," International Journal of Pure and Applied Mathematics, vol. 30, no. 3, pp. 415-427, 2006.   2006 Published
[15] A. Bonfoh, "Finite-dimensional attractor for the viscous Cahn-Hilliard equation in an unbounded domain," Quarterly of Applied Mathematics, vol. 64, no. 1, pp. 93-104, 2006.   2006 Published
[16] A. Bonfoh, "Some Cahn-Hilliard-Gurtin models with a logarithmic potential," Applied Mathematics Letters, vol. 18, no. 3, pp. 253-259, 2005.   2005 Published
[17] A. Bonfoh, "Existence and continuity of uniform exponential attractors for a singular perturbation of a generalized Cahn-Hilliard equation," Asymptotic Analysis, vol. 43, no. 3, pp. 233-247, 2005.   2005 Published
[18] A. S. Bonfoh, "Existence of solutions for a degenerate nonlinear evolution equation," Revista de la Real Academia de Ciencias Exactas, F??sicas y Naturales, vol. 99, no. 1, pp. 119-124, 2005.   2005 Published
[19] A. S. Bonfoh, "On a system of nonlinear partial differential equations," Bulletin of the Australian Mathematical Society, vol. 71, pp. 435-446, 2005.   2005 Published
[20] A. S. Bonfoh, "Error analysis of a Cahn-Hilliard system with elasticity," in Proc. Intern. Conf. Num. Anal. Applied Math., 2005, pp. 87-70.   2005
[21] A. Bonfoh, "A fourth-order parabolic equation with a logarithmic nonlinearity," Bulletin of the Australian Mathematical Society, vol. 69, pp. 35-48, 2004.   2004 Published
[22] A. Bonfoh and A. Miranville, "On Cahn-Hilliard-Gurtin equations," Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 5, pp. 3455-3466, 2001.  (Proc. 3rd World Congress of Nonlinear Analysts) 2001 Published


Projects

# Title PI/Coordinaor Members Sponsor Grant Ref # S-Date E-Date Month Status
1 Dynamics of singularly perturbed dissipative evolution equations A. S. Bonfoh KFUPM Internal Research IN100017 May 2010 Apr 2012 24 Completed


Course Files

Course Section Semester F1,F2.. :Final Exams, E1,E2..:Majors Q1,.. :Quizzes H1,.. : Homework& S1,.: Syllabus
MATH202 05 191
MATH202 09 191
MATH202 14 182 Q1 Q2 Q3 Q4 Q5 Q6
MATH435 01 182 F1
MATH595 02 182
MATH202 05 181 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 06 181
(See section: 05 )
MATH565 01 181 F1
MATH202 14 172 Q1 Q2 Q3 Q4 Q5 Q6
MATH470 01 172 F1
MATH101 15 171 Q1 Q2 Q3 Q4 Q5 Q6
MATH101 38 171
(See section: 15 )
MATH465 01 171 F1
MATH202 05 162 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 10 162
(See section: 05 )
MATH102 01 161 E1 E2 F1 Q1 Q2 Q3 Q4 Q5 Q6
MATH102 03 161
(See section: 01 )
MATH202 05 152 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 10 152
(See section: 05 )
MATH102 05 151 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 10 151 Q1 Q2 Q3 Q4 Q5 Q6
MATH102 05 142 Q1 Q2 Q3 Q4 Q5 Q6
MATH102 29 142
(See section: 05 )
MATH202 07 141 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 11 141 Q1 Q2 Q3 Q4 Q5 Q6
MATH695 01 141 F1
MATH695 06 141 F1
MATH102 06 132 Q1 Q2 Q3 Q4 Q5 Q6
MATH590 02 132 F1
MATH202 06 131 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 09 131
(See section: 06 )
MATH102 05 122 Q1 Q2 Q3 Q4 Q5 Q6
MATH470 01 122 S1 H1 H2 H3 H4 E1 E2 F1
MATH301 02 121 F1 E1 E2 Q1 Q2 Q3 Q4 Q5 Q6 O1 S1
MATH301 03 121
(See section: 02 )
MATH101 10 112 Q1 Q2 Q3 Q4 Q5 Q6 S1
MATH202 15 112 Q1 Q2 Q3 Q4 Q5 Q6 S1
MATH202 18 112 Q1 Q2 Q3 Q4 Q5 Q6
MATH201 01 111 Q1 Q2 Q3 Q4 Q5 Q6 Q7 S1
MATH201 05 111
(See section: 01 )
MATH202 10 102 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 18 102 Q1 Q2 Q3 Q4 Q5 Q6
MATH202 01 101 Q1 Q2 Q3 Q4 S1 F1 E1 E2
MATH202 06 101 Q1 Q2 Q3 Q4 S1
MATH202 02 092 Q1 Q2 Q3 Q4 Q5 S1 E1 E2 F1
MATH202 07 092 Q1 Q2 Q3 Q4 Q5 S1
MATH202 13 092 Q1 Q2 Q3 Q4 Q5 S1
MATH201 01 091 F1 E1 E2 Q1 Q2 Q3 Q4 Q5 S1
MATH201 02 091 F1 E1 E2 Q1 Q2 Q3 Q4 Q5 S1
MATH201 05 091 F1 E1 E2 Q1 Q2 Q3 Q4 Q5 S1
MATH201 04 082 F1 E1 E2 Q1 Q2 Q3 Q4 Q5 Q6 H1 O1 O2 S1
MATH201 05 082 F1 E1 E2 O1 O2 S1 H1 Q1 Q2 Q3 Q4 Q5 Q6
MATH201 09 081 S1 Q5 Q6
MATH201 14 081 S1 Q4 Q5


Teachnical Reports

# Title View

[Last Update: 11/12/2019]