1) **Description:** Basic Definitions of Rings and Modules, Homomorphisms, Sums and Products, Exactness, Hom and Tensor, Adjoint Isomorphisms, Free, Projective and Injective Modules. Chain Conditions, Primary Decomposition, Noetherian Rings and Modules, Artinian Rings, Structure theorems.

2) **Prerequisite:** Math 345 (Math 450 is recommended)

3) **Textbooks:**

4) **Further Reading:**

5) **Grading Policy:**

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam I</td>
<td>200</td>
</tr>
<tr>
<td>Exam II</td>
<td>200</td>
</tr>
<tr>
<td>Research Project</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
</tr>
</tbody>
</table>
Detailed Syllabus

<table>
<thead>
<tr>
<th>Week(s)</th>
<th>Section(s)</th>
<th>Title</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>III.1-III.2</td>
<td>Rings, Subrings and Ideals</td>
<td>Definitions & examples</td>
</tr>
<tr>
<td></td>
<td>III.3</td>
<td>Homomorphisms</td>
<td>Theorem 3.6.</td>
</tr>
<tr>
<td></td>
<td>III.4</td>
<td>Domains and Fields</td>
<td>4.5. – 4.7., 4.11.</td>
</tr>
<tr>
<td>3- 4</td>
<td>III.5 & III.6</td>
<td>Polynomials in One & Several Variables</td>
<td>5.1., 5.5., 5.7., 5.11., 5.12.; 6.8.</td>
</tr>
<tr>
<td></td>
<td>III.7*</td>
<td>Formal Power Series</td>
<td>7.3., 7.5.</td>
</tr>
<tr>
<td></td>
<td>III.8</td>
<td>Principal Ideal Domains</td>
<td>8.3., 8.4., 8.11., 8.12.</td>
</tr>
<tr>
<td>5</td>
<td>III.10</td>
<td>Unique Factorization Domains</td>
<td>10.2., 10.4., 10.9.</td>
</tr>
<tr>
<td></td>
<td>III.11</td>
<td>Noetherian Rings</td>
<td>11.1., 11.2. (\text{(Hilbert’s Basis Theorem)})</td>
</tr>
</tbody>
</table>

Chapter VII. Commutative Rings

| 6 | VII. | Primary Decomposition | 1.9., 1.10. (Noether-Lasker) |
| | VII.7 | Localization | 4.2., 4.5., 4.7., 4.10. |

Chapter VIII. Modules

7	VIII.1.	Definition	Definitions and examples	
8	III.3.	Direct Sums and Products	3.1., 3.2., 3.5.	
	III.4 & III.5	Free Modules / Vector Spaces	4.2., 4.5., 4.6., 5.3., 5.5.	
9	III.6.	Modules over Principal Ideal Domains	6.1. – 6.3.	
10	III.8.	Chain Conditions	Equivalent conditions defining Noetherian/Artinian Modules	8.8., 8.10

Chapter IX. Semisimple Rings and Modules

11	IX.1.	Simple Rings and Modules	1.2.(Schur’s Lemma), 1.8., 1.9.
	IX.2.	Semisimple Modules	2.1.
	IX.3.	The Artin Wedderburn Theorem	3.1., 3.3., 3.8.
12	IX.4*	Primitive Rings	Jacobson Density Theorem
	IX.5.	The Jacobson Radical	5.1., 5.2., 5.6., 5.6. & 5.7. \(\text{(Nakayama’s Lemma)}\)
	IX.6.	Artinian Rings	6.1. – 6.4. (Hopkins-Levitzki)

Chapter X. Projectives and Injectives

13	X.1.	Exact Sequences	Five-Lemma, Nine-Lemma
	X.2*	Pullbacks and Pushouts	Existence/Uniqueness & Basic Properties
	X.5*	The Injective Hull	5.6. (Existence & Uniqueness)
	X.6*	Hereditary Rings	Definition, Dedekind Domains

Chapter XI. Construction

15-16	XI.1.	Groups of Homomorphisms	1.4., 1.5.
	XI.2.	Properties of Hom	2.1., 2.5.
	XI.7*	Dual Modules	7.4., 7.5., 7.7.
	XI.8	Flat Modules	Basic Properties, 8.7. 8.11.

Numbers refer to Grillet’s book “Abstract Algebra”\(^1\)
Sections marked with “*” will be covered as projects by students \(^2\)