King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics SYLLABUS

Course #:	Math 681	
Title:	Topics in Mathematical Programming	
Selected Topic:	Multicriteria Optimization	
Instructor:	Dr. Q.H. Ansari	
Course Description:	Review of orders, cones and convex sets; contingent cones; Convex and differentiable maps; Optimal element of a set; Multicriteria optimization problem and its solution; Weighted sum approach; The ε -constraint method; Set optimization and its solution; Continent derivatives and contingent epidervatives and their properties; Concept of subdifferential of a set-valued map; Optimality condition for set optimization	
Textbook:	1. M. I Mul Spri ISB *2. J. Ja Vec Spri ISB	Chrgott icriteria Optimization nger-Verlag, Berlin, Heidelberg, New York, 2000 N 3-540-67869-7. hn or Optimization, Theory, Applications, and Extensions nger-Verlag, Berlin, Heidelberg, New York, 2004 N 3-540-20615-9.

Week	Section/Chapter	Topics
1-2	1.4	Orders and Cones
	1.1*	Convex Sets
	3.5*	Contingent Cones
	2.1^{*}	Convex Maps
	2.2^{*}	Differentiable Maps
3	Chapter 4 [*]	Optimality Notions
4-6	1.5	Classification of Multicriteria Optimization Problem
	2.1	Pareto Optimal Solutions and Efficient Points
	2.2	Weakly and Strictly Pareto Optimal Solutions
	2.3	Proper Pareto Optimality and Proper Efficiency
7-9	$11.2.1^{*}$	Weighted Sum Approach
	3.1	Scalarizations and Efficiency
	3.2	Scalarizations and Weak Efficiency
	3.3	Scalarizations and Proper Efficiency
	4.2	The ε -constraint Method
10-11	Chapter 14 [*]	Basic Concepts and Results of Set Optimization
	15.1 [*]	Contingent Derivatives and Contingent Epideratives
	15.2^{*}	Properties of Contingent Epiderivatives
12-13	16.1	Concept of Subdifferential
	16.2*	Properties of the Subdifferential
	16.3 [*]	Weak Subgradients
14	17.1*	Optimality Conditions with Contingent Epiderivatives
15	17.2*	Optimality Conditions with Subgradients
	17.3*	Optimality Conditions with Weak Subgradients