Title: Introduction to Linear Algebra

Credit: 3 – 0 – 3

Objectives: To introduce the basic ideas of linear algebra, and matrix computations, and to teach some techniques to solve linear equations. Students at the sophomore level have a good opportunity to learn how to handle abstract concepts.

Grading policy: Exam1 : 22%
Exam2 : 22%
Class-Work : 20%
Final Exam : 36%

Attendance: A DN grade will be given to all students with 12 or more unexcused absences. Students coming more than 15 min. after the beginning of the course will receive an L=late mark. Two L marks = One absence.

Missing an Exam: There will be no makeup quiz/exam under any circumstance. If a student misses a quiz/an Exam for a legitimate reason (medical emergency, major family problems), his grade for this quiz/exam will be determined on the basis of his average performance in the quizzes. Further, the student must provide an official excuse within 7 days of the missed quiz/exam.
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Chapter</th>
<th>Topics</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.10 – 15.10</td>
<td>1.1</td>
<td>Systems of Linear Equations</td>
<td>6, 8, 12, 16, 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>Matrices, Matrix Operations</td>
<td>6, 8, 10, 12, 18, 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18.10 – 22.10</td>
<td>1.3</td>
<td>Algebraic properties of Matrix Operations</td>
<td>8, 10, 12, 20, 30, 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4</td>
<td>Special Types of Matrices and Partitioned</td>
<td>6, 10, 14, 18, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>Matrices</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25.10 – 29.10</td>
<td>1.5</td>
<td>Echelon Form of a Matrix I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6</td>
<td>Echelon Form of a Matrix II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7</td>
<td>Elementary Matrices; Finding A^{-1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7</td>
<td>Equivalent Matrices</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>01.11 – 12.11</td>
<td>1.8</td>
<td>LU-Factorization</td>
<td>4, 10, 16, 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>Vectors in the plane and in 3-space</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2</td>
<td>Vector Spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3</td>
<td>Subspaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>Linear Independence</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>08.11 – 19.11</td>
<td>2.5</td>
<td>Basis and Dimension</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>Coordinates and Isomorphisms</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15.11 – 26.11</td>
<td>2.7</td>
<td>Homogeneous Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.8</td>
<td>Rank of a Matrix</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22.11 – 02.12</td>
<td>3.1</td>
<td>Standard Inner Product on \mathbb{R}^2 and \mathbb{R}^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>Cross Product in \mathbb{R}^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>Inner Product Spaces I</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>Inner Product Spaces II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4</td>
<td>Gram-Schmidt Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>Definition and Examples of Linear Transf.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14.12 – 17.12</td>
<td>3.1</td>
<td>Standard Inner Product on \mathbb{R}^2 and \mathbb{R}^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>Cross Product in \mathbb{R}^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.3</td>
<td>Inner Product Spaces I</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>21.12 – 25.12</td>
<td>3.3</td>
<td>Inner Product Spaces II</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4</td>
<td>Gram-Schmidt Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.1</td>
<td>Definition and Examples of Linear Transf.</td>
<td></td>
</tr>
</tbody>
</table>

Midterm Exam (22%)

Vacation
<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Sections</th>
<th>Topics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>28.12 – 01.01</td>
<td>4.2</td>
<td>Kernel and Range of a Linear Transf.</td>
<td>2, 4, 6, 10, 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3</td>
<td>Matrix of a linear Transf.</td>
<td>6, 8, 12, 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6</td>
<td>Similarity</td>
<td>4, 6, 16, 18, 22</td>
</tr>
<tr>
<td>04.01</td>
<td></td>
<td></td>
<td>Midterm Exam (22%)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>06.01 – 08.01</td>
<td>{5.1,5.2}</td>
<td>Definition and Properties of Determinants</td>
<td>2, 12, 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.3</td>
<td>Co-factor Expansions</td>
<td>4, 6, 9, 16, 22, 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.4</td>
<td>Inverse of Matrix</td>
<td>2, 12, 16, 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.5</td>
<td>Other Applications of Determinants</td>
<td>6, 10, 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>Diagonalization I</td>
<td>4, 6, 12, 14</td>
</tr>
<tr>
<td>12</td>
<td>11.01 – 15.01</td>
<td>6.1</td>
<td>Diagonalization II</td>
<td>2, 4, 6, 10, 34, 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2</td>
<td>Diagonalization of Symmetric Matrices</td>
<td>2, 4, 6, 12, 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3</td>
<td>Real Quadratic Forms</td>
<td>2, 4, 11 – 16, 22, 28</td>
</tr>
<tr>
<td>13</td>
<td>18.01 – 22.01</td>
<td>6.4</td>
<td>Conic Sections</td>
<td>1 – 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5</td>
<td>Quadric Surface, or review the previous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chapters (depending on the level of class)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>25.01 – 29.01</td>
<td></td>
<td>Final Exam (36%)</td>
<td></td>
</tr>
</tbody>
</table>