Course Objectives:

Prerequisites: STAT 501.

Textbook

Package:
1. R statistical language

Instructor: Dr. Saddam Akber Abbasi
Office: Bldg – 5, room – 318. Phone: 4546

Assessment
Assessment for this course will be based on homework, term report, 2 major exams and a comprehensive final exam, as in the following:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework, Quizzes, Attendance and Class participation</td>
<td>10%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>20%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>20%</td>
</tr>
<tr>
<td>Term Paper Report</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam (Comprehensive)</td>
<td>35%</td>
</tr>
</tbody>
</table>
Tentative syllabus

The main objective of the course is to provide a deeper understanding of theory and applications of Regression Analysis. The course will help graduate students in learning advance modeling techniques and analyzing real data sets using R statistical language.

Topics:

- Simple Linear Regression
- Matrix approach to Simple and Multiple Linear Regression Analysis
- Model Selection and Validation
 - Model building process
 - Criteria for model selection
 - Automatic search procedures for model selection
- Model Diagnostics
- Remedial Measures
 - Weighted least squares
 - Ridge Regression
 - Robust Regression
 - Bootstrapping
 - Nonparametric regression
- Regression models for Quantitative and Qualitative Predictors
 - Polynomial regression models
 - Interaction regression models
 - Qualitative predictors
- Autocorrelation in Time Series Data
 - Problems of Autocorrelation
 - Remedial measures for Autocorrelation
 - Forecasting with Auto-correlated error terms
- Intro to Nonlinear Regression Models
- Regression Models with Binary Response
- Simple and Multiple Logistic Regression
- Poisson Regression
- Regression Approach to ANOVA