King Fahd University of Petroleum & Minerals Department of Mathematical Sciences

MATH 321 Introduction to Numerical Computing (Term 151) Course Syllabus

Course Instructor: Dr. Hattan Tawfiq

Recommended Text: "Numerical Analysis" by Richard L. Burden, J. Douglas Faires 9th (2011)

Main Topics to be Covered:

Floating-point arithmetic and error analysis. Solution of non-linear equations. Polynomial interpolation. Numerical integration and differentiation. Data fitting. Solution of linear algebraic systems. Initial and boundary value problems of ordinary differential equations.

Course Objectives: This course is designed to introduce numerical methods for solving a variety of problems, linear, nonlinear, and numerical approximation. In this course, we focus on both: the theoretical and computational aspects.

Students Learning Outcome: After completion of the course, the students should:			
\Box be familiar with a variety of methods used to solve/approximate problems.			
\Box be able to write computer programs to implement some numerical methods.			
\Box be aware of the theoretical basis upon which these numerical methods are built.			
\Box be able to apply his knowledge in solving practical problems.			

Computer Usage: Computer software is essential for this course. Mainly we will be using MATLAB as the computational platform.

Attendance: KFUPM attendance policy will be enforced.

Grading Policy:

- 1. Two Major Exams (20% each)
- 2. Final Exam (35%) (Comprehensive)
- 3. Homework (10%)
- 4. MATLAB projects (10%)
- 5. Participation (in Class/Online) (5%)

Academic Integrity: All KFUPM policies regarding ethics apply to this course.

Weekly Coverage of Course Material

Week	Sec.	Topic
1	1.1 1.2	Taylor Polynomials and Series Round-off Errors and Computer Arithmetic
2	1.3	Algorithms and Convergence MATLAB
3	2.1 2.2	The Bisection Method Fixed- Point Iteration
4	2.3	Newton's Method and its Extensions
5	3.1 3.3	Interpolation and the Lagrange Poly. Divided Differences
6	3.5	Cubic Spline Interpolation
7	4.1	Numerical Differentiation
8	4.3 4.4	Element of Numerical Integration Composite Numerical Integration
9	5.1 5.2	The Elementary Theory of I.V.P. Euler' Methods
10	5.3	Runge-Kutta Methods
11	6.1 6.2	Linear systems of Equation Pivoting Strategies
12	6.5	Matrix Factorization
13	7.3	The Jacobi and Gauss-Siedel Iterative Techniques
14	8.1	Discrete Least Squares Approximation
15	11.3	Finite-Difference Methods for Linear Problems
16		Review