King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics SYLLABUS (Math 521, Term 182)

Dr. Othman Echi

Course:	Math 521
Title:	General Topology I
Textbook:	J.R. Munkres, Topology, A First Course, Prentice-Hall, 2000
Catalogue	Basic Set Theory (countable and uncountable sets, Cartesian products).
Description	Topological Spaces (basis for a topology, product topology, functions, homeomorphisms, standard examples), Connected spaces, path connectedness. Compact spaces, compactness in metrizable spaces, Countability axioms, first countable and second countable spaces. Separation axioms, Urysohn's Lemma,
	Urysohn's metrization theory. Compact metric spaces.
Office Hours	Monay and Wednesday: (09:00-11:00)
Grading Policy	

Instructor: Dr. Othman EchiOffice: 5-201/4Tel: 860-1802E-mail: echi@kfupm.edu.saWeb page: http://faculty.kfupm.edu.sa/MATH/echi/Grading Policy: M.Exam 30%, Presentations 25%, Hw+attendance 10%, F.Exam 35%.

EXAMS:

- 1. M. Exam tba
- **2. <u>F. Exam:</u>** April 22, 2019 at 7:00 PM

Weeks	Material
1	Set Theory: Functions, Relations, Cartesian Products, Finite sets, Countable and
	Uncountable Sets, Infinite Sets and the Axiom of Choice, Well-ordered Sets
2,3,4,5	Topological Spaces and Continuous Function: Topological Spaces, Basis for a
	Topology, The Order topology, The Product Topology, The Subspace Topology,
	Closed Sets and Limit Points, Continuous Functions, The Product Topology, The
	Metric Topology, The Quotient Topology
6,7,8	Connectedness and Compactness: Connected Spaces, Connected Subspaces of
	the Real Line, Components and Local Connectedness, Compact Spaces, Local
	Compactness
9,10, 11	Countability and Separation Axiom: The Countability Axioms, Separation
	Axioms, Normal Spaces, The Urysohn Lemma, The Urysohn Metrization
	Theorem, The Tietze Extension Theorem
12	The Tychonoff Theorem: The Tychonoff Theorem, The Stone-Cech
	Compactification
13	Metrization Theorems and Paracompactnes: Local Finiteness, Nagata-
	Smirnov Metrization Theorem, Paracompactness, The Smirnov Metrization
	Theorem
14,15	Complete Metric Spaces and Function Spaces: Complete Metric Spaces,
	Compactness in Metric Spaces, Pointwise and Compact Convergence, Ascoli's
	Theorem