King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

SYLLABUS

Semester I: 2020-2021 (201)

Instructor: Dr. A. Bonfoh Course #: MATH 565

Title: Advanced Ordinary Differential Equations I

Textbook: Nonlinear Differential Equations and Dynamical Systems by F. Verhulst

(Second Edition, 1996. Revised 2006)

Objectives: The course aims to reinforce students' knowledge of the concepts

of existence, uniqueness, continuation, asymptotic behavior and

stability of solutions to ordinary differential equations.

Course description:

Existence, uniqueness and continuity of solutions. Linear systems, solution space, linear systems with constant and periodic coefficients. Phase space, classification of critical points, Poincaré-Bendixson theory. Stability theory of linear and almost linear systems. Stability of periodic solutions. Lyapunov's direct method and applications.

Prerequisites: MATH 435

Learning outcomes:

Upon successful completion of this course, a student should be able to:

- Solve 1st order linear systems with constant coefficients.
- Prove existence, uniqueness and continuation of solutions to 1st order linear and nonlinear systems.
- Analyze the asymptotic behavior of solutions to linear, almost linear and periodic systems.
- Obtain phase-portrait of 2 and 3-dimensional autonomous systems.
- Analyze periodic solutions by applying the Poincaré-Bendixson theorem.
- Prove stability of solutions to linear, almost linear and periodic systems not only by the method of linearization but also by the Lyapunov's direct method.

Week	Date	Sec.	Topics	Suggested Homework Problems
1	Aug 30 - Sep 3	1.2 1.3	Existence and uniqueness Gronwall's inequality	
2	Sep 6 – 10		Phase space, orbits Critical points and linearization	
3-4	Sep 13 - 24	2.4	Periodic solutions First integrals and integral manifolds Evolution of a volume element, Liouville's theorem	2.1, 2.2, 2.3, 2.5, 2.7, 2.8
	Sep 27– Oct 1 st	3.1 3.2	Two-dimensional linear systems Remarks on 3-dimensional linear systems	3.1, 3.3, 3.5, 3.6, 3.7
6	Oct 4 – 8	3.3	Critical points of nonlinear equations Practice session	

	Oct 11 – 4.1		Bendixson's criterion	
7	15	4.2	Geometric auxiliaries, preparation for the Poincaré-Bendixson theorem	
8	Oct 18 – 22	4.3	The Poincaré-Bendixson theorem	
9	Oct 25 – 29	4.4	Applications of the Poincaré-Bendixson theorem Periodic solutions in R ⁿ	4.2, 4.4, 4.5, 4.6, 4.7, 4.8
10	Nov 1 st - 5	5.1 5.2	Simple examples Stability of equilibrium solutions	
11	Nov 8 – 12	5.3 5.4	Stability of periodic solutions Linearization	5.1, 5.4, 5.5
12	Nov 15 - 19	6.1 6.2	Equations with constants coefficients Equations with coefficients which have a limit	
		6.3	Equations with periodic coefficients	6.3, 6.5, 6.6, 6.7
13	Nov 22 - 26	7.1 7.2 7.3	Asymptotic stability of the trivial solution Instability of the trivial solution Stability of periodic solutions of autonomous equations	7.2, 7.3, 7.6, 7.7
		T		<u></u>
14	Nov 29 – Dec 3			
15	Dec 6 – 10	8.4	Applications and examples	8.1, 8.4, 8.7, 8.8, 8.9
16	Dec 13 - 17		Practice session	

Grading:

Assessment 1	(Week 5)	[1.2-2.5]	15%
Midterm Exam	(Week 10)	[3.1-4.5]	15%
Assessment 2	(Week 13)	[5.1-6.3]	15%
Homework assign	15%		
Presentations			15%
Final Exam	(Week 16)	[Comprehensive]	25%